24 research outputs found

    Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements

    Full text link
    We present a new method to accurately locate persons indoors by fusing inertial navigation system (INS) techniques with active RFID technology. A foot-mounted inertial measuring units (IMUs)-based position estimation method, is aided by the received signal strengths (RSSs) obtained from several active RFID tags placed at known locations in a building. In contrast to other authors that integrate IMUs and RSS with a loose Kalman filter (KF)-based coupling (by using the residuals of inertial- and RSS-calculated positions), we present a tight KF-based INS/RFID integration, using the residuals between the INS-predicted reader-to-tag ranges and the ranges derived from a generic RSS path-loss model. Our approach also includes other drift reduction methods such as zero velocity updates (ZUPTs) at foot stance detections, zero angular-rate updates (ZARUs) when the user is motionless, and heading corrections using magnetometers. A complementary extended Kalman filter (EKF), throughout its 15-element error state vector, compensates the position, velocity and attitude errors of the INS solution, as well as IMU biases. This methodology is valid for any kind of motion (forward, lateral or backward walk, at different speeds), and does not require an offline calibration for the user gait. The integrated INS+RFID methodology eliminates the typical drift of IMU-alone solutions (approximately 1% of the total traveled distance), resulting in typical positioning errors along the walking path (no matter its length) of approximately 1.5 m

    Auto-localization algorithm for local positioning systems

    Get PDF
    This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Precise Localisation of Archaeological Findings with a new Ultrasonic 3D Positioning Sensor

    No full text
    This paper presents a new ultrasonic sensor for 3D co-ordinate estimation, which has been especially designed to localize and sketch findings after they are extracted by archaeologists. Classical tasks at paleo-archaeological excavations are: measuring position with metric tapes, drawing a sketch of found object, and introducing all information into a database manually; operations that are not efficient and prone to errors. The positioning system we have designed allows simultaneous characterization of several findings (absolute position, shape, size and orientation) using as a tool a wireless 2-metre-long rod, whose lower tip has to be placed on the object under study. The system contains two ultrasonic emitters and employs the time-of-flight (TOF) the ultrasonic signal takes to reach several fixed receivers, and a robust trilateration algorithm to determine the position of the rod tip with 10 mm accuracy. Object position and contour information are automatically transferred to a database in a central computer avoiding manual typewriting. Airflow is the main source of positioning error in outdoor environments, so a strategy based on a differential emitter fixed at a known position is used, which permits to cancel out the effects of uniform air motion.Fundación Atapuerca, y el Ministerio Ciencia y TecnologíaPeer reviewe

    Smartphone-Based Cooperative Indoor Localization with RFID Technology

    No full text
    In GPS-denied indoor environments, localization and tracking of people can be achieved with a mobile device such as a smartphone by processing the received signal strength (RSS) of RF signals emitted from known location beacons (anchor nodes), combined with Pedestrian Dead Reckoning (PDR) estimates of the user motion. An enhacement of this localization technique is feasible if the users themselves carry additional RF emitters (mobile nodes), and the cooperative position estimates of a group of persons incorporate the RSS measurements exchanged between users. We propose a centralized cooperative particle filter (PF) formulation over the joint state of all users that permits to process RSS measurements from both anchor and mobile emitters, as well as PDR motion estimates and map information (if available) to increase the overall positioning accuracy, particularly in regions with low density of anchor nodes. Smartphones are used as a convenient mobile platform for sensor measurements acquisition, low-level processing, and data transmission to a central unit, where cooperative localization processing takes place. The cooperative method is experimentally demonstrated with four users moving in an area of 1600 m2 , with 7 anchor nodes comprised of active RFID (radio frequency identification) tags, and additional mobile tags carried by each user. Due to the limited coverage provided by the anchor beacons, RSS-based individual localization is inaccurate (6.1 m median error), but this improves to 4.9 m median error with the cooperative PF. Further gains are produced if the PDR information is added to the filter: median error of 3.1 m (individual) and 2.6 m (cooperative); and if map information is also considered, the results are 1.8 m (individual) and 1.6 m (cooperative). Thus, for each version of the particle filter, cooperative localization outperforms individual localization in terms of positioning accuracy.Financial support for this work comes from projects TARSIUS (ref. TIN2015-71564-C4-2-R, MINECO/FEDER) and REPNIN (ref. TEC2015-71426-REDT) of the Spanish Ministry of Economy, Industry and Competitiveness.Peer Reviewe

    Computer vision system for estimating and controlling the weight of glass gobs during their industrial formation process

    Get PDF
    6 pages, 5 figures.We present a computer vision system for measuring the weight of gobs during a glass-forming process, and a control strategy to automatically correct any weight deviation from a given set point. The system is based on a reliable gob area estimation using image-processing algorithms. A monochrome CCD high-resolution camera and a photodetector for synchronizing acquisition are used for registering gob images. Assuming that the gob has symmetry of revolution about the vertical axis, the proposed system estimates the weight of gobs with accuracy better than ±0.75%. A learning weight control strategy is proposed based on a proportional-integral (PI)-repetitive control scheme. The weight deviation from a set point is used as a control signal to adjust the glass flow into the feeder. This regulation scheme enables effective weight control, canceling mid- and long-term effects. The tracking error of ±1.5% means a reduction of 40% when compared with a traditional PI controller.Peer reviewe

    Method for localisation in indoor areas, bases on detection and pairing of lighting points

    No full text
    Método de localización en espacios interiores basado en detección y emparejamiento de puntos de luz que comprende obtener un mapa de puntos de luz de un recinto; detectar el movimiento de un usuario;detectar el paso bajo puntos de luz dispuestos en el recinto, mediante un sensor luminoso provisto en un dispositivo móvil;donde además el método comprende: establecer hipótesis de ubicación inicial del usuario con respecto al mapa de puntos de luz;actualizar las hipótesis de ubicación del usuario según la información relativa al movimiento del usuario y cada vez que se detecta un punto de luz; asignar una probabilidad a las hipótesis de ubicación, y; determinar la ubicación concreta del usuario como aquella designada por la hipótesis de ubicación que tenga asignada la mayor probabilidad.Peer reviewedConsejo Superior de Investigaciones Científicas (España), Universidad Politécnica de MadridB1 Patente sin examen previ
    corecore